
GSoC proposal: A language server for Dhall

Student: Frederik Ramcke, Mentor: Gabriel Gonzalez

Abstract

The aim of the proposed project is to improve support for the Dhall
language in mainstream editors via the Language Server Protocol standard.

1 Introduction
Dhall is a programmable configuration language that first originated as a Haskell
package. While it is already being quickly picked up both by industrial and hobby
users, we hope to make it even more approachable by improving its support in
mainstream editors.

The Dhall configuration language Dhall is a programmable configuration
language that brings principles from the world of strongly typed functional
programming into the less academic world of configuration files. More specifically,
Dhall is a polymorphic lambda calculus without general recursion—all Dhall
programs are guaranteed to terminate! In a sense this makes Dhall a very
restricted language, that gives strong guarantees at the expense of expressiveness;
this trade-off turns out to be extremely desirable in a configuration language.

As a configuration language Dhall’s design includes a few domain specific
features. As an example, while Dhall has no notion of module, Dhall supports
referencing (i.e. importing) arbitrary expressions by path or URL. Dhall also
allows us to annotate such import statements with the expected hash of the
imported expression, thus “freezing” the import.

Finally, Dhall’s lack of general recursion together with its formal semantics
means that Dhall code satisfies a property called strong normalization. In practice
this means that any Dhall program/expression is guaranteed to terminate, and
moreover that any expression has a unique normal form; for example any
expression of type Natural is guaranteed to evaluate to a natural number (like
42 or 1337). Note that this holds for expressions of any type, for example the
normal form of the function λ(b : Bool)→ b&& b is λ(b : Bool)→ b.

IDE support Editor integration, from basic syntax highlighting to more
advanced features like “jump to definition”, makes the life of software developers
easier. In the case of Dhall, the hope is to make the language even more attractive
to mainstream users by providing a polished development experience.

1



The design of the Dhall language further allows us to offer some very unique
features, like for example reducing any expression to a canonical normal form
free of indirection and obfuscation (which is useful when auditing code from
untrusted sources), or inlining imports.

The project This proposal aims towards developing language integration for
the Dhall language into most of the mainstream editors (e.g. Atom, VSCode,
Emacs etc.) by leveraging the Language Server Protocol (LSP) standard. The
LSP defines a unifying framework for interacting with editors, allowing us to
reuse the same language backend for different IDEs.

Thanks to PanAeon, another contributor, a basic prototype implementation
of a Dhall language server and accompanying VSCode client already exists;
the proposed project will build on this existing codebase. The deliverables are
therefore going to be new releases of the language server and matching VSCode
client.

2 Benefit to the community
The most immediate benefit this project will provide is an improvement to the
infrastructure surrounding the Dhall language, therefore improving the coding
experience for its users.

Additionally, a fully featured Dhall language server will serve as a useful
example of how to improve editor support for other languages. This is particularly
relevant to the Haskell community—after all Haskell is the language of choice
for parser and compiler writers.

3 About me
I am Frederik, a master’s student of computer science at the Chalmers University
of Technology in Göteborg, Sweden. My academic interests lie in type theory
and logic, and in my free time I try to climb (as in rock climbing) as much as
possible.

As part of my thesis project I am mainly working with Agda, a dependently
typed language for programming and proofs that shares some similarity with
Haskell. For personal projects I prefer working with Haskell (who doesn’t), but I
also have experience with C/C++, Java, and similar imperative languages.

My academic background being type theory means that I am quite comfortable
with the theoretical background of the Dhall language; parsers and type checkers
are also not unfamiliar to me. My experience with writing “user-facing” code is
however limited; in this respect I am particularly looking forward to learning a
lot through the project!

2



4 Project Scope
The aim of this project is to deliver a polished product, that is, any of the
contributed features should be immediately useable and useful to the end user.
To that end I will:

Focus on a single editor I will focus on VSCode as the target editor for the
scope of this project. Though the language server protocol promises to unify
editor integration, in practice we still need to supply a “client” plugin for each
supported editor. Here we choose “depth over breadth” and leave further editor
support as future work.

Leverage the Language server protocol I will try to stay within the core
features of the LSP standard that are supported without having to provide
additional client-side code. This way I avoid having to deal with Javascript more
than absolutely necessary, and I also minimise the amount of bespoke code that
will have to be reimplemented for every additional editor down the line.

Start from existing prototype PanAeon (GitHub user name) already set
up the infrastructure for a basic language server and client (the language server
currently supports error highlighting and formatting). By building on existing
infrastructure I will hopefully be able to be ramp up my productivity very
quickly.

4.1 Detailed Features
The following is a detailed list of features that I intend to implement. They
are ordered in increasing complexity, corresponding to the order in which I will
implement them.

Linting The existing prototype already allows the user to format Dhall code.
I will polish this feature by

• allowing the user to lint the code as well

• providing feedback to the user, confirming that linting happened or report-
ing linting errors

• adding an option to format/lint Dhall files on saving them

This feature is simple to implement since it just makes existing functionality of
the Dhall package available to the user (the Dhall Haskell package exports an
API both for linting and formatting).

3



Type Errors This is the second existing feature of the prototype. What needs
to be done:

• making error ranges more precise (they currently include trailing whites-
pace)

• add an option to provide Dhall’s detailed error messages

Type on hover On hovering over an identifier present its type. On the backend
side this will involve having to work with the Dhall AST and type checker. On
the client side this should be immediately supported by the “Hover request”
functionality of the LSP.

This is the first novel feature that I will contribute to the language server. In
my research leading up to this proposal I considered this feature to guide me
in understanding the Dhall codebase, and I found that the implementation will
boil down to a relatively simple AST traversal.

Annotate let bindings Add a right-click command to annotate a “let” state-
ment with its type, i.e. transforming letx = t into letx : A = t by inferring the
type of the body t.

This will involve inserting type information into the AST and rendering it
back to the user; by always running the code formatter after AST changes we
can avoid some complexity here. On the other hand, I will have to add code to
the client to add the right-click functionality.

Imports Add right-click commands to

• open an imported file

• “freeze” an import statement, i.e. to annotate it with the cryptographic
hash of its content

• inline an import statement, i.e. replacing an external reference with its
contents

This will build on the work done implementing the previous feature. Note that
the Haskell implementation of the Dhall language already exposes the freezing
and inlining of imports; what remains is to expose these features through the
LSP.

Normalisation Allow the user to select an expression and

• α-normalise the expression, replacing variable names with their DeBruijn
indices

• β-normalise the expression, i.e. resolving function applications etc.

The main difficulty will lie in implementing the selection of expressions on the
client side (this is not immediately supported by the LSP) and mapping these
to subtrees of the AST.

4



5 Proposed Timeline
Before 27 May (Community Bonding period) I will continue to famil-
iarise myself with the following:

• the specification of the Language Server Protocol

• the existing client-side code (vscode-dhall-lsp)

• the haskell-lsp project, which supplies the infrastructure for our plugin for
interacting via the LSP

• the existing language server prototype (dhall-lsp-server)

I will also announce my work on the project at discourse.dhall-lang.org; this will
be my primary way of interacting with the community (outside of Git commits
and pull requests). Later, I will publish reports on each finished feature on the
forum and use that to gather feedback.

27 May–17 June (Warm up) Implement the proposed changes to the
existing functionality of the prototype (polishing linting and displaying of error
messages). Write/gather documentation on how to install the language server
and how to use the existing features. The main purpose of this is for me to get
comfortable with the the codebase.

17 June–1 July (First milestone) Implement the “type on hover” function-
ality. This is the first novel contribution.

1 July–15 July (Second milestone) Implement the “annotate lets” feature.
This is the first feature that will need nontrivial changes to the VSCode client.

15 July–29 July (Third milestone) Implement freezing, inlining, and fol-
lowing imports. Builds on the “annotate lets” feature.

29 July–12 August (Fourth milestone) Implement the α/β normalisation
feature.

12 August–26 August (Final Stretch) I leave a buffer of about two weeks
to absorb any unforeseen delays. If time remains I will use this time to review
the documentation I produced in the previous months and improve it further.

5


